{ "id": "math/0501536", "version": "v1", "published": "2005-01-29T15:15:13.000Z", "updated": "2005-01-29T15:15:13.000Z", "title": "Uniqueness of tangent cones for calibrated 2-cycles", "authors": [ "David Pumberger", "Tristan Riviere" ], "comment": "37 pages", "categories": [ "math.DG", "math.AP" ], "abstract": "We prove that tangent cones to 2-dimensional calibrated cycles are unique. Using this result we prove a rate of convergence for the mass of the blow-up of a calibrated integral 2-cycle towards the limiting density. With the same techniques, we can also prove such a rate for J-holomorphic maps between almost complex manifolds and deduce the uniqueness of their tangent maps.", "revisions": [ { "version": "v1", "updated": "2005-01-29T15:15:13.000Z" } ], "analyses": { "subjects": [ "49Q15", "35J60", "53C38" ], "keywords": [ "tangent cones", "uniqueness", "complex manifolds", "j-holomorphic maps", "tangent maps" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......1536P" } } }