{ "id": "math/0501510", "version": "v3", "published": "2005-01-28T16:09:14.000Z", "updated": "2005-02-15T09:30:11.000Z", "title": "Minimal diagrams of classical knots", "authors": [ "Vassily Olegovich Manturov" ], "comment": "References corrected", "categories": [ "math.GT" ], "abstract": "We show that if a classical knot diagram satisfies a certain combinatorial condition then it is minimal with respect to the number of classical crossings. This statement is proved by using the Kauffman bracket and the construction of atoms and knots.", "revisions": [ { "version": "v3", "updated": "2005-02-15T09:30:11.000Z" } ], "analyses": { "subjects": [ "57M25" ], "keywords": [ "minimal diagrams", "classical knot diagram satisfies", "kauffman bracket", "combinatorial condition", "classical crossings" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......1510O" } } }