{ "id": "math/0501502", "version": "v1", "published": "2005-01-28T12:30:00.000Z", "updated": "2005-01-28T12:30:00.000Z", "title": "Lattices in finite real reflection groups", "authors": [ "Thomas Brady", "Colum Watt" ], "comment": "29 pages, 3 figures", "categories": [ "math.CO", "math.GR" ], "abstract": "For a finite real reflection group $W$ with Coxeter element $\\gamma$ we give a uniform proof that the closed interval, $[I, \\gamma]$ forms a lattice in the partial order on $W$ induced by reflection length. The proof involves the construction of a simplicial complex which can be embedded in the type W simplicial generalised associahedron.", "revisions": [ { "version": "v1", "updated": "2005-01-28T12:30:00.000Z" } ], "analyses": { "subjects": [ "20F55" ], "keywords": [ "finite real reflection group", "simplicial generalised associahedron", "uniform proof", "partial order", "reflection length" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......1502B" } } }