{ "id": "math/0501448", "version": "v2", "published": "2005-01-25T15:14:01.000Z", "updated": "2005-02-04T20:37:12.000Z", "title": "The rigidity problem for analytic critical circle maps", "authors": [ "D. Khmelev", "M. Yampolsky" ], "categories": [ "math.DS" ], "abstract": "It is shown that if $f$ and $g$ are any two analytic critical circle mappings with the same irrational rotation number, then the conjugacy that maps the critical point of $f$ to that of $g$ has regularity $C^{1+\\alpha}$ at the critical point, with a universal value of $\\alpha>0$. As a consequence, a new proof of the hyperbolicity of the full renormalization horseshoe of critical circle maps is given.", "revisions": [ { "version": "v2", "updated": "2005-02-04T20:37:12.000Z" } ], "analyses": { "subjects": [ "37E10" ], "keywords": [ "analytic critical circle maps", "rigidity problem", "analytic critical circle mappings", "full renormalization horseshoe", "critical point" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......1448K" } } }