{ "id": "math/0501295", "version": "v1", "published": "2005-01-19T19:28:59.000Z", "updated": "2005-01-19T19:28:59.000Z", "title": "Slowly divergent geodesics in moduli space", "authors": [ "Y. Cheung" ], "comment": "26 pages, no figures", "journal": "Conformal Geometry & Dynamics. 8 (2004) 167-189", "categories": [ "math.DS", "math.NT" ], "abstract": "Slowly divergent geodesics in the moduli space of Riemann surfaces of genus at least 2 are constructed via cyclic branched covers of the torus. Nonergodic examples (i.e. geodesics whose defining quadratic differential has nonergodic vertical foliation) diverging to infinity at sublinear rates are constructed using a Diophantine condition. Examples with an arbitrarily slow prescribed growth rate are also exhibited.", "revisions": [ { "version": "v1", "updated": "2005-01-19T19:28:59.000Z" } ], "analyses": { "subjects": [ "37D40", "11P21" ], "keywords": [ "slowly divergent geodesics", "moduli space", "arbitrarily slow prescribed growth rate", "diophantine condition", "sublinear rates" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Conform. Geom. Dyn." }, "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......1295C" } } }