{ "id": "math/0501242", "version": "v1", "published": "2005-01-15T14:22:44.000Z", "updated": "2005-01-15T14:22:44.000Z", "title": "Semi-Finite Forms of Bilateral Basic Hypergeometric Series", "authors": [ "William Y. C. Chen", "Amy M. Fu" ], "comment": "8 pages. accepted by Proc. Amer. Math. Soc", "categories": [ "math.CA", "math.CO" ], "abstract": "We show that several classical bilateral summation and transformation formulas have semi-finite forms. We obtain these semi-finite forms from unilateral summation and transformation formulas. Our method can be applied to derive Ramanujan's $_1\\psi_1$ summation, Bailey's $_2\\psi_2$ transformations, and Bailey's $_6\\psi_6$ summation.", "revisions": [ { "version": "v1", "updated": "2005-01-15T14:22:44.000Z" } ], "analyses": { "subjects": [ "33D15", "05A30" ], "keywords": [ "bilateral basic hypergeometric series", "semi-finite forms", "transformation formulas", "classical bilateral summation", "unilateral summation" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......1242C" } } }