{ "id": "math/0501125", "version": "v1", "published": "2005-01-09T18:05:39.000Z", "updated": "2005-01-09T18:05:39.000Z", "title": "Some remarks on the Schrödinger equation with a potential in $L^{r}_{t}L^{s}_{x}$", "authors": [ "Piero D'Ancona", "Vittoria Pierfelice", "Nicola Visciglia" ], "comment": "to appear on Math. Annalen", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We study the dispersive properties of the linear Schr\\\"odinger equation with a time-dependent potential $V(t,x)$. We show that an appropriate integrability condition in space and time on $V$, i.e. the boundedness of a suitable $L^{r}_{t}L^{s}_{x}$ norm, is sufficient to prove the full set of Strichartz estimates. We also construct several counterexamples which show that our assumptions are optimal, both for local and for global Strichartz estimates, in the class of large unsigned potentials $V\\in L^{r}_tL^{s}_x$.", "revisions": [ { "version": "v1", "updated": "2005-01-09T18:05:39.000Z" } ], "analyses": { "subjects": [ "35B40", "35B25", "35B65", "35Q40", "35Q55" ], "keywords": [ "schrödinger equation", "appropriate integrability condition", "global strichartz estimates", "full set", "time-dependent potential" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......1125D" } } }