{ "id": "math/0412536", "version": "v1", "published": "2004-12-30T02:17:19.000Z", "updated": "2004-12-30T02:17:19.000Z", "title": "Sharp upper bounds on the number of the scattering poles", "authors": [ "Plamen Stefanov" ], "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "For various compactly supported perturbations of the Laplacian in odd dimensions $n$, we prove a sharp upper bound of the resonance counting function $N(r)$ of the type $N(r) \\le A_n r^n(1+o(1))$ with an explicit constant $A_n$. In a few special cases, we show that this estimate turns into an asymptotic.", "revisions": [ { "version": "v1", "updated": "2004-12-30T02:17:19.000Z" } ], "analyses": { "subjects": [ "35P25" ], "keywords": [ "sharp upper bound", "scattering poles", "odd dimensions", "resonance counting function", "explicit constant" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }