{ "id": "math/0412480", "version": "v3", "published": "2004-12-23T15:04:28.000Z", "updated": "2007-01-15T16:10:33.000Z", "title": "Volume and lattice points of reflexive simplices", "authors": [ "Benjamin Nill" ], "comment": "AMS-LaTeX, 19 pages; paper reorganized, introduction added, bibliography updated; typos corrected", "journal": "Discr. Comp. Geom. 37 (2007), 301-320", "doi": "10.1007/s00454-006-1299-y", "categories": [ "math.AG", "math.CO", "math.NT" ], "abstract": "We prove sharp upper bounds on the volume and the number of lattice points on edges of higher-dimensional reflexive simplices. These convex-geometric results are derived from new number-theoretic bounds on the denominators of unit fractions summing up to one. The main algebro-geometric application is a sharp upper bound on the anticanonical degree of higher-dimensional Q-factorial Gorenstein toric Fano varieties with Picard number one, where we completely characterize the case of equality.", "revisions": [ { "version": "v3", "updated": "2007-01-15T16:10:33.000Z" } ], "analyses": { "subjects": [ "14M25", "14J45", "52B20", "11D75", "11H06" ], "keywords": [ "lattice points", "reflexive simplices", "sharp upper bound", "higher-dimensional q-factorial gorenstein toric fano", "q-factorial gorenstein toric fano varieties" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....12480N" } } }