{ "id": "math/0412367", "version": "v3", "published": "2004-12-18T19:02:34.000Z", "updated": "2005-03-31T20:20:40.000Z", "title": "Endomorphism Rings and Isogenies Classes for Drinfeld Modules of Rank 2 Over Finite Fields", "authors": [ "Mohamed Ahmed Mohamed Saadbouh" ], "comment": "19", "categories": [ "math.NT", "math.AG" ], "abstract": "Let $\\Phi $ be a Drinfeld $\\mathbf{F}_{q}[T]$-module of rank 2, over a finite field $L$, a finite extension of $n$ degrees of a finite field with $q$ elements $\\mathbf{F}_{q}$. Let $m$ be the extension degrees of $ L$ over the field $\\mathbf{F}_{q}[T]/P$, $P$ is the $\\mathbf{F}%_{q}[T]$-characteristic of $L$, and $d$ the degree of the polynomial $P$. We will discuss about a many analogies points with elliptic curves. We start by the endomorphism ring of a Drinfeld $\\mathbf{F}_{q}[T]$-module of rank 2, End$_{L}\\Phi $, and we specify the maximality conditions and non maximality conditions as a $\\mathbf{F}_{q}[T]$-order in the ring of division End$_{L}\\Phi \\otimes _{\\mathbf{F}_{q}[T]}% \\mathbf{F}_{q}(T)$, in the next point we will interested to the characteristic polynomial of a Drinfeld module of rank 2 and used it to calculate the number of isogeny classes for such module, at last we will interested to the Characteristic of Euler-Poincare $\\chi_{\\Phi}$ and we will calculated the cardinal of this ideals.", "revisions": [ { "version": "v3", "updated": "2005-03-31T20:20:40.000Z" } ], "analyses": { "subjects": [ "14J32", "81T30" ], "keywords": [ "finite field", "drinfeld module", "isogenies classes", "endomorphism ring", "non maximality conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....12367S" } } }