{ "id": "math/0412242", "version": "v2", "published": "2004-12-13T10:16:42.000Z", "updated": "2005-03-15T10:21:16.000Z", "title": "Vanishing of eigenspaces and cyclotomic fields", "authors": [ "Robert Osburn" ], "comment": "6 pages, minor corrections made, to appear in the International Mathematics Research Notices", "journal": "IMRN, no. 20, (2005), 1195-1202", "categories": [ "math.NT" ], "abstract": "We use a result of Thaine to give an alternative proof of the fact that, for a prime p>3 congruent to 3 modulo 4, the component e_{(p+1)/2} of the p-Sylow subgroup of the ideal class group of \\mathbb Q(\\zeta_{p}) is trivial.", "revisions": [ { "version": "v2", "updated": "2005-03-15T10:21:16.000Z" } ], "analyses": { "subjects": [ "11R18", "11T22" ], "keywords": [ "cyclotomic fields", "eigenspaces", "ideal class group", "p-sylow subgroup", "alternative proof" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....12242O" } } }