{ "id": "math/0412200", "version": "v1", "published": "2004-12-09T21:06:01.000Z", "updated": "2004-12-09T21:06:01.000Z", "title": "Large deviations for rough paths of the fractional Brownian motion", "authors": [ "Annie Millet", "Marta Sanz-Solé" ], "comment": "32 pages", "doi": "10.1016/j.anihpb.2005.04.003", "categories": [ "math.PR" ], "abstract": "Starting from the construction of a geometric rough path associated with a fractional Brownian motion with Hurst parameter $H\\in]{1/4}, {1/2}[$ given by Coutin and Qian (2002), we prove a large deviation principle in the space of geometric rough paths, extending classical results on Gaussian processes. As a by-product, geometric rough paths associated to elements of the reproducing kernel Hilbert space of the fractional Brownian motion are obtained and an explicit integral representation is given.", "revisions": [ { "version": "v1", "updated": "2004-12-09T21:06:01.000Z" } ], "analyses": { "subjects": [ "60G15", "60F10" ], "keywords": [ "fractional brownian motion", "explicit integral representation", "large deviation principle", "reproducing kernel hilbert space", "geometric rough paths" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....12200M" } } }