{ "id": "math/0412199", "version": "v1", "published": "2004-12-09T20:57:39.000Z", "updated": "2004-12-09T20:57:39.000Z", "title": "Laguerre Functions on Symmetric Cones and recursion relations in the Real Case", "authors": [ "Michael Aristidou", "Mark Davidson", "Gestur 'Olafsson" ], "categories": [ "math.CA", "math.RT" ], "abstract": "In this article we derive differential recursion relations for the Laguerre functions on the cone C of positive definite real matrices. The highest weight representations of the group Sp(n,R) play a fundamental role. Each such representation acts on a Hilbert space of holomorphic functions on the tube domain C+ i Sym(n,R). We then use the Laplace transform to carry the Lie algebra action over to L^2(C ,dm_t). The differential recursion relations result by restricting to a distinguished three dimensional subalgebra, which is isomorphic to sl(2,R).", "revisions": [ { "version": "v1", "updated": "2004-12-09T20:57:39.000Z" } ], "analyses": { "subjects": [ "22E46", "43A85", "32M15", "44A10" ], "keywords": [ "laguerre functions", "real case", "symmetric cones", "differential recursion relations result", "highest weight representations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....12199A" } } }