{ "id": "math/0412171", "version": "v1", "published": "2004-12-08T17:10:10.000Z", "updated": "2004-12-08T17:10:10.000Z", "title": "Embedding $\\ell_{\\infty}$ into the space of all Operators on Certain Banach Spaces", "authors": [ "G. Androulakis", "K. Beanland", "S. J. Dilworth", "F. Sanacory" ], "comment": "10 pages", "categories": [ "math.FA" ], "abstract": "We give sufficient conditions on a Banach space $X$ which ensure that $\\ell_{\\infty}$ embeds in $\\mathcal{L}(X)$, the space of all operators on $X$. We say that a basic sequence $(e_n)$ is quasisubsymmetric if for any two increasing sequences $(k_n)$ and $(\\ell_n)$ of positive integers with $k_n \\leq \\ell_n$ for all $n$, we have that $(e_{k_n})$ dominates $(e_{\\ell_n})$. We prove that if a Banach space $X$ has a seminormalized quasisubsymmetric basis then $\\ell_{\\infty}$ embeds in $\\mathcal{L}(X)$.", "revisions": [ { "version": "v1", "updated": "2004-12-08T17:10:10.000Z" } ], "analyses": { "subjects": [ "46B28", "46B03" ], "keywords": [ "banach space", "basic sequence", "sufficient conditions", "seminormalized quasisubsymmetric basis", "increasing sequences" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....12171A" } } }