{ "id": "math/0412104", "version": "v1", "published": "2004-12-06T09:01:01.000Z", "updated": "2004-12-06T09:01:01.000Z", "title": "Examples of Shimura correspondence for level p^2 and real quadratic twists", "authors": [ "Ariel Pacetti", "Gonzalo Tornaria" ], "comment": "21 pages, submitted to \"Elliptic curves and random matrix theory.\"", "categories": [ "math.NT" ], "abstract": "We give examples of Shimura correspondence for rational modular forms f of weight 2 and level p^2, for primes p<=19, computed as an application of a method we introduced in \\cite{Pacetti-Tornaria}. Furthermore, we verify in this examples a conjectural formula for the central values L(f,-pd,1) and, in case p = 3 (mod 4), a formula for the central values L(f,d,1) corresponding to the real quadratic twists of f.", "revisions": [ { "version": "v1", "updated": "2004-12-06T09:01:01.000Z" } ], "analyses": { "subjects": [ "11F37", "11F67" ], "keywords": [ "real quadratic twists", "shimura correspondence", "central values", "rational modular forms", "conjectural formula" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....12104P" } } }