{ "id": "math/0412086", "version": "v3", "published": "2004-12-04T15:03:20.000Z", "updated": "2006-01-04T09:16:31.000Z", "title": "On Manin's conjecture for singular del Pezzo surfaces of degree four, I", "authors": [ "R. de la Breteche", "T. D. Browning" ], "comment": "30 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "In this paper the height zeta function associated to a certain singular del Pezzo surface of degree four is studied. If $U$ denotes the open subset formed by deleting the unique line from this surface, then an asymptotic formula for the number of rational points of bounded height on $U$ is established which verifies the Manin conjecture.", "revisions": [ { "version": "v3", "updated": "2006-01-04T09:16:31.000Z" } ], "analyses": { "subjects": [ "11G35", "14G05", "14G10" ], "keywords": [ "singular del pezzo surface", "manins conjecture", "asymptotic formula", "unique line", "manin conjecture" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....12086D" } } }