{ "id": "math/0412045", "version": "v3", "published": "2004-12-02T08:53:17.000Z", "updated": "2006-01-31T13:16:01.000Z", "title": "Global Gronwall Estimates for Integral Curves on Riemannian Manifolds", "authors": [ "Michael Kunzinger", "Hermann Schichl", "Roland Steinbauer", "James A. Vickers" ], "comment": "4 pages, 1 figure, correction of some misprints", "journal": "Rev. Mat. Complut. 19 (2006), no. 1, 133--137.", "categories": [ "math.DG", "math.CA" ], "abstract": "We prove Gronwall-type estimates for the distance of integral curves of smooth vector fields on a Riemannian manifold. Such estimates are of central importance for all methods of solving ODEs in a verified way, i.e., with full control of roundoff errors. Our results may therefore be seen as a prerequisite for the generalization of such methods to the setting of Riemannian manifolds.", "revisions": [ { "version": "v3", "updated": "2006-01-31T13:16:01.000Z" } ], "analyses": { "subjects": [ "53B21", "53C22", "34A26" ], "keywords": [ "riemannian manifold", "global gronwall estimates", "integral curves", "smooth vector fields", "gronwall-type estimates" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....12045K" } } }