{ "id": "math/0411623", "version": "v3", "published": "2004-11-28T21:11:48.000Z", "updated": "2005-11-30T03:18:29.000Z", "title": "Quantum computation of zeta functions of curves", "authors": [ "Kiran S. Kedlaya" ], "comment": "17 pages; v3 (refereed version): minor corrections", "journal": "preprint; published version: Computational Complexity 15 (2006), 1-19.", "categories": [ "math.NT" ], "abstract": "We exhibit a quantum algorithm for determining the zeta function of a genus g curve over a finite field F_q, which is polynomial in g and log(q). This amounts to giving an algorithm to produce provably random elements of the class group of a curve, plus a recipe for recovering a Weil polynomial from enough of its cyclic resultants. The latter effectivizes a result of Fried in a restricted setting.", "revisions": [ { "version": "v3", "updated": "2005-11-30T03:18:29.000Z" } ], "analyses": { "subjects": [ "11M38" ], "keywords": [ "zeta function", "quantum computation", "produce provably random elements", "finite field", "quantum algorithm" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....11623K" } } }