{ "id": "math/0411537", "version": "v1", "published": "2004-11-24T08:08:28.000Z", "updated": "2004-11-24T08:08:28.000Z", "title": "On the higher moments of the error term in the divisor problem", "authors": [ "Aleksandar Ivić", "Patrick Sargos" ], "comment": "27 pages", "journal": "Illinois Journal of Mathematics 51(2007), 353-377.", "categories": [ "math.NT" ], "abstract": "Let $\\Delta(x)$ denote the error term in the Dirichlet divisor problem. Our main results are the asymptotic formulas $$ \\int_1^X \\Delta^3(x){\\rm d}x = BX^{7/4} + O_\\epsilon(X^{\\beta+\\epsilon}) \\qquad(B > 0) $$ and $$ \\int_1^X \\Delta^4(x){\\rm d}x = CX^2 + O_\\epsilon(X^{\\gamma+\\epsilon}) \\qquad(C > 0) $$ with $\\beta = 7/5, \\gamma = 23/12$. This improves on the values $\\beta = 47/28, \\gamma = 45/23$, due to K.-M. Tsang. A result on the integrals of $\\Delta^3(x)$ and $\\Delta^4(x)$ in short intervals is also proved.", "revisions": [ { "version": "v1", "updated": "2004-11-24T08:08:28.000Z" } ], "analyses": { "subjects": [ "11N37", "11M06" ], "keywords": [ "error term", "higher moments", "dirichlet divisor problem", "main results", "asymptotic formulas" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....11537I" } } }