{ "id": "math/0411498", "version": "v1", "published": "2004-11-22T21:10:03.000Z", "updated": "2004-11-22T21:10:03.000Z", "title": "The structure of Bernoulli numbers", "authors": [ "Bernd C. Kellner" ], "comment": "14 pages", "categories": [ "math.NT" ], "abstract": "We conjecture that the structure of Bernoulli numbers can be explicitly given in the closed form $$ B_n = (-1)^{\\frac{n}{2}-1} \\prod_{p-1 \\nmid n} |n|_p^{-1} \\prod\\limits_{(p,l)\\in\\Psi^{\\rm irr}_1 \\atop n \\equiv l \\mods{p-1}} |p (\\chi_{(p,l)} - {\\textstyle \\frac{n-l}{p-1}})|_p^{-1} \\prod\\limits_{p-1 \\mid n} p^{-1} $$ where the $\\chi_{(p,l)}$ are zeros of certain $p$-adic zeta functions and $\\Psi^{\\rm irr}_1$ is the set of irregular pairs. The more complicated but improbable case where the conjecture does not hold is also handled; we obtain an unconditional structural formula for Bernoulli numbers. Finally, applications are given which are related to classical results.", "revisions": [ { "version": "v1", "updated": "2004-11-22T21:10:03.000Z" } ], "analyses": { "subjects": [ "11B68" ], "keywords": [ "bernoulli numbers", "adic zeta functions", "unconditional structural formula", "conjecture", "irregular pairs" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....11498K" } } }