{ "id": "math/0411492", "version": "v1", "published": "2004-11-22T18:41:06.000Z", "updated": "2004-11-22T18:41:06.000Z", "title": "Rational maps are $d$-adic Bernoulli", "authors": [ "D. Heicklen", "C. Hoffman" ], "comment": "12 pages, published version", "journal": "Ann. of Math. (2), Vol. 156 (2002), no. 1, 103--114", "categories": [ "math.DS" ], "abstract": "Freire, Lopes and Mane proved that for any rational map f there exists a natural invariant measure \\mu_f [5]. Mane showed there exists an n>0 such that (f^n, \\mu_f) is measurably conjugate to the one-sided $d^n$-shift, with Bernoulli measure $(\\frac 1{d^n},... ,\\frac 1{d^n})$ \\[15]. In this paper we show that (f,\\mu_f)is conjugate to the one-sided Bernoulli $d$-shift. This verifies a conjecture of Freire, Lopes and Mane [5] and Lyubich [11].", "revisions": [ { "version": "v1", "updated": "2004-11-22T18:41:06.000Z" } ], "analyses": { "subjects": [ "37F10", "28D05", "37A05", "37A35" ], "keywords": [ "rational map", "adic bernoulli", "natural invariant measure", "bernoulli measure", "measurably conjugate" ], "tags": [ "journal article" ], "publication": { "publisher": "Princeton University and the Institute for Advanced Study", "journal": "Ann. Math." }, "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....11492H" } } }