{ "id": "math/0411484", "version": "v3", "published": "2004-11-22T14:46:23.000Z", "updated": "2005-07-27T10:59:34.000Z", "title": "The number of $S_4$ fields with given discriminant", "authors": [ "Juergen Klueners" ], "comment": "new version", "categories": [ "math.NT" ], "abstract": "We prove that the number of quartic $S_4$--extensions of the rationals of given discriminant $d$ is $O_\\eps(d^{1/2+\\eps})$ for all $\\eps>0$. For a prime number $p$ we derive that the dimension of the space of octahedral modular forms of weight 1 and conductor $p$ or $p^2$ is bounded above by $O(p^{1/2}\\log(p)^2)$.", "revisions": [ { "version": "v3", "updated": "2005-07-27T10:59:34.000Z" } ], "analyses": { "subjects": [ "11R29", "11R16", "11R32" ], "keywords": [ "discriminant", "octahedral modular forms", "prime number", "extensions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....11484K" } } }