{ "id": "math/0411463", "version": "v1", "published": "2004-11-21T18:43:25.000Z", "updated": "2004-11-21T18:43:25.000Z", "title": "Engel-like characterization of radicals in finite dimensional Lie algebras and finite groups", "authors": [ "Tatiana Bandman", "Mikhail Borovoi", "Fritz Grunewald", "Boris Kunyavskii", "Eugene Plotkin" ], "comment": "17 pages", "journal": "Manuscripta Math. 119 (2006), 365-381", "categories": [ "math.GR", "math.RA" ], "abstract": "A classical theorem of R. Baer describes the nilpotent radical of a finite group G as the set of all Engel elements, i.e. elements y in G such that for any x in G the n-th commutator [x,y,...,y] equals 1 for n big enough. We obtain a characterization of the solvable radical of a finite dimensional Lie algebra defined over a field of characteristic zero in similar terms. We suggest a conjectural description of the solvable radical of a finite group as the set of Engel-like elements and reduce this conjecture to the case of a finite simple group.", "revisions": [ { "version": "v1", "updated": "2004-11-21T18:43:25.000Z" } ], "analyses": { "subjects": [ "20D25", "17B05", "17B01" ], "keywords": [ "finite group", "engel-like characterization", "finite simple group", "finite dimensional lie algebra", "characteristic zero" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....11463B" } } }