{ "id": "math/0411402", "version": "v1", "published": "2004-11-18T09:59:28.000Z", "updated": "2004-11-18T09:59:28.000Z", "title": "Dirac-Harmonic Maps", "authors": [ "Qun Chen", "Juergen Jost", "Jiayu Li", "Guofang Wang" ], "categories": [ "math.DG", "math.AP" ], "abstract": "We introduce a functional that couples the nonlinear sigma model with a spinor field: $L=\\int_M[|d\\phi|^2+(\\psi,\\D\\psi)]$. In two dimensions, it is conformally invariant. The critical points of this functional are called Dirac-harmonic maps. We study some geometric and analytic aspects of such maps, in particular a removable singularity theorem.", "revisions": [ { "version": "v1", "updated": "2004-11-18T09:59:28.000Z" } ], "analyses": { "subjects": [ "58E20" ], "keywords": [ "dirac-harmonic maps", "nonlinear sigma model", "functional", "spinor field", "analytic aspects" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....11402C" } } }