{ "id": "math/0411285", "version": "v1", "published": "2004-11-12T13:43:57.000Z", "updated": "2004-11-12T13:43:57.000Z", "title": "Nonexistence results for a class of nonlinear elliptic equations involving critical Sobolev exponents", "authors": [ "Cristina Tarsi" ], "comment": "14 pages", "categories": [ "math.AP" ], "abstract": "In this paper we study the problem of bifurcation from the origin of solutions of elliptic Dirichlet problems involving critical Sobolev exponent, defined on a bounded domain $\\Omega$ in $\\mathbb{R} ^N$: we prove that the first critical case are $N=3, 4$ (not only N=3, as just proved by Brezis and Nirenberg), exhibiting two nonexistence results for a class of elliptic problem in these dimensions.", "revisions": [ { "version": "v1", "updated": "2004-11-12T13:43:57.000Z" } ], "analyses": { "subjects": [ "35J65" ], "keywords": [ "critical sobolev exponent", "nonlinear elliptic equations", "nonexistence results", "elliptic dirichlet problems", "first critical case" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....11285T" } } }