{ "id": "math/0411109", "version": "v2", "published": "2004-11-05T02:35:27.000Z", "updated": "2010-01-03T21:54:34.000Z", "title": "The global stability of the Minkowski space-time in harmonic gauge", "authors": [ "Hans Lindblad", "Igor Rodnianski" ], "categories": [ "math.AP", "gr-qc", "math-ph", "math.MP" ], "abstract": "We give a new proof of the global stability of Minkowski space originally established in the vacuum case by Christodoulou and Klainerman. The new approach shows that the Einstein-vacuum and the Einstein-scalar field equations with general asymptotically flat initial data satisfying a global smallness condition produce global (causally geodesically complete) solutions asymptotically convergent to the Minkowski space-time. The proof utilizes the classical harmonic (also known as de Donder or wave coordinate) gauge.", "revisions": [ { "version": "v2", "updated": "2010-01-03T21:54:34.000Z" } ], "analyses": { "keywords": [ "minkowski space-time", "global stability", "harmonic gauge", "flat initial data satisfying", "global smallness condition produce global" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "inspire": 664750, "adsabs": "2004math.....11109L" } } }