{ "id": "math/0411095", "version": "v5", "published": "2004-11-04T17:02:11.000Z", "updated": "2008-06-30T21:10:56.000Z", "title": "On random $\\pm 1$ matrices: Singularity and Determinant", "authors": [ "Terence Tao", "Van Vu" ], "comment": "25 pages, no figures. Slight numerical corrections to Lemma 2.2", "journal": "Random Structures and Algorithms 28 (2006), 1-23", "categories": [ "math.CO", "math.PR" ], "abstract": "This papers contains two results concerning random $n \\times n$ Bernoulli matrices. First, we show that with probability tending to one the determinant has absolute value $\\sqrt {n!} \\exp(O(\\sqrt(n log n)))$. Next, we prove a new upper bound $.939^n$ on the probability that the matrix is singular. We also give some generalizations to other random matrix models.", "revisions": [ { "version": "v5", "updated": "2008-06-30T21:10:56.000Z" } ], "analyses": { "subjects": [ "15A52" ], "keywords": [ "determinant", "singularity", "random matrix models", "papers contains", "probability" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....11095T" } } }