{ "id": "math/0410507", "version": "v2", "published": "2004-10-23T10:50:03.000Z", "updated": "2004-10-27T14:07:15.000Z", "title": "Topologies on the group of homeomorphisms of a Cantor set", "authors": [ "Sergey Bezuglyi", "Anthony H. Dooley", "Jan Kwiatkowski" ], "comment": "33 pages", "categories": [ "math.DS" ], "abstract": "Let $Homeo(\\Omega)$ be the group of all homeomorphisms of a Cantor set $\\Omega$. We study topological properties of $Homeo(\\Omega)$ and its subsets with respect to the uniform $(\\tau)$ and weak $(\\tau_w)$ topologies. The classes of odometers and periodic, aperiodic, minimal, rank 1 homeomorphisms are considered and the closures of those classes in $\\tau$ and $\\tau_w$ are found.", "revisions": [ { "version": "v2", "updated": "2004-10-27T14:07:15.000Z" } ], "analyses": { "subjects": [ "37B05", "37A40" ], "keywords": [ "cantor set", "homeomorphisms", "topologies", "study topological properties" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....10507B" } } }