{ "id": "math/0410505", "version": "v2", "published": "2004-10-23T10:20:26.000Z", "updated": "2004-10-27T14:02:38.000Z", "title": "The Rokhlin lemma for homeomorphisms of a Cantor set", "authors": [ "Sergey Bezuglyi", "Anthony H. Dooley", "Konstantin Medynets" ], "comment": "9 pages. Proc. Ams, to appear", "journal": "Proc. AMS 133 (2005), p. 2957-2964", "categories": [ "math.DS" ], "abstract": "For a Cantor set $X$, let $Homeo(X)$ denote the group of all homeomorphisms of $X$. The main result of this note is the following theorem. Let $T\\in Homeo(X)$ be an aperiodic homeomorphism, let $\\mu_1,\\mu_2,...,\\mu_k$ be Borel probability measures on $X$, $\\e> 0$, and $n \\ge 2$. Then there exists a clopen set $E\\subset X$ such that the sets $E,TE,..., T^{n-1}E$ are disjoint and $\\mu_i(E\\cup TE\\cup...\\cup T^{n-1}E) > 1 - \\e, i= 1,...,k$. Several corollaries of this result are given. In particular, it is proved that for any aperiodic $T\\in Homeo(X)$ the set of all homeomorphisms conjugate to $T$ is dense in the set of aperiodic homeomorphisms.", "revisions": [ { "version": "v2", "updated": "2004-10-27T14:02:38.000Z" } ], "analyses": { "subjects": [ "37B05", "37A40" ], "keywords": [ "cantor set", "rokhlin lemma", "aperiodic homeomorphism", "borel probability measures", "main result" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Proc. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....10505B" } } }