{ "id": "math/0410493", "version": "v1", "published": "2004-10-22T14:51:39.000Z", "updated": "2004-10-22T14:51:39.000Z", "title": "Estimates of the first eigenvalue of minimal hypersurfaces of $\\mathbb{S}^{n+1}", "authors": [ "Abdenago Barros G. Pacelli Bessa" ], "comment": "A note of 5 pages", "journal": "Matematica Conteporanea, vol 17, (1999) 71-75", "categories": [ "math.DG", "math.AP" ], "abstract": "We consider a solution f of a certain Dirichlet Problem on a domain in S^(n+1) whose boundary is a minimal hypersurface and we prove a Poincare type inequality for f. One have equality iff Yau's conjecture about the first non-zero eigenvalue of closed minimal hypersurfaces of S^(n+1) is true.", "revisions": [ { "version": "v1", "updated": "2004-10-22T14:51:39.000Z" } ], "analyses": { "subjects": [ "53C40", "53C42", "58C40" ], "keywords": [ "first eigenvalue", "first non-zero eigenvalue", "poincare type inequality", "dirichlet problem", "yaus conjecture" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....10493P" } } }