{ "id": "math/0410384", "version": "v1", "published": "2004-10-18T07:10:03.000Z", "updated": "2004-10-18T07:10:03.000Z", "title": "Hitting and return times in ergodic dynamical systems", "authors": [ "N. Haydn", "Y. Lacroix", "S. Vaienti" ], "comment": "8 pages", "categories": [ "math.DS", "math.PR" ], "abstract": "Given an ergodic dynamical system $(X,T,\\mu)$, and $U\\subset X$ measurable with $\\mu (U)>0$, let $\\mu (U)\\tau_U(x)$ denote the normalized hitting time of $x\\in X$ to $U$. We prove that given a sequence $(U_n)$ with $\\mu (U_n)\\to 0$, the distribution function of the normalized hitting times to $U_n$ converges weakly to some sub-probability distribution $F$ if and only if the distribution function of the normalized return time converges weakly to some distribution function $\\tilde F$, and that in the converging case, $$ F(t)=\\int_0^t(1-\\tilde F(s))ds, t\\ge 0.\\tag$\\diamondsuit$ $$ This in particular characterizes asymptotics for hitting times, and shows that the asymptotics for return times is exponential if and only if the one for hitting times is too.", "revisions": [ { "version": "v1", "updated": "2004-10-18T07:10:03.000Z" } ], "analyses": { "subjects": [ "37A05", "37A50", "28D05" ], "keywords": [ "ergodic dynamical system", "distribution function", "normalized hitting time", "sub-probability distribution", "normalized return time converges" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....10384H" } } }