{ "id": "math/0410368", "version": "v1", "published": "2004-10-16T19:10:05.000Z", "updated": "2004-10-16T19:10:05.000Z", "title": "Universal acyclic resolutions for arbitrary coefficient groups", "authors": [ "Michael Levin" ], "journal": "Fund. Math. 178 (2003), no. 2, 159--169", "categories": [ "math.GT", "math.GN" ], "abstract": "We prove that for every compactum $X$ and every integer $n \\geq 2$ there are a compactum $Z$ of $\\dim \\leq n+1$ and a surjective $UV^{n-1}$-map $r: Z \\lo X$ such that for every abelian group $G$ and every integer $k \\geq 2$ such that $\\dim_G X \\leq k \\leq n$ we have $\\dim_G Z \\leq k$ and $r$ is $G$-acyclic.", "revisions": [ { "version": "v1", "updated": "2004-10-16T19:10:05.000Z" } ], "analyses": { "subjects": [ "55M10", "54F45" ], "keywords": [ "universal acyclic resolutions", "arbitrary coefficient groups", "abelian group" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....10368L" } } }