{ "id": "math/0410309", "version": "v1", "published": "2004-10-13T06:04:16.000Z", "updated": "2004-10-13T06:04:16.000Z", "title": "Noncomplete embeddings of rational surfaces", "authors": [ "Euisung Park" ], "comment": "8 pages", "categories": [ "math.AG", "math.AC" ], "abstract": "In this paper, we study the Castelnuovo-Mumford regularity of nonlinearly normal embedding of rational surfaces. Let $X$ be a rational surface and let $L \\in {Pic}X$ be a very ample line bundle. For a very ample subsystem $V \\subset H^0 (X,L)$ of codimension $t \\geq 1$, if $X \\hookrightarrow \\P (V)$ satisfies Property $N^S_1$, then ${Reg} (X) \\leq t+2$\\cite{KP}. Thus we investigate Property $N^S_1$ of noncomplete linear systems on X. And our main result is about a condition of the position of $V$ in $H^0 (X,L)$ such that $X \\hookrightarrow \\P (V)$ satisfies Property $N^S_1$. Indeed it is related to the geometry of a smooth rational curve of $X$. Also we apply our result to $\\P^2$ and Hirzebruch surfaces.", "revisions": [ { "version": "v1", "updated": "2004-10-13T06:04:16.000Z" } ], "analyses": { "subjects": [ "14N05", "14J26", "16E05" ], "keywords": [ "rational surface", "noncomplete embeddings", "satisfies property", "smooth rational curve", "ample line bundle" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....10309P" } } }