{ "id": "math/0410184", "version": "v1", "published": "2004-10-06T20:29:45.000Z", "updated": "2004-10-06T20:29:45.000Z", "title": "Interior numerical approximation of boundary value problems with a distributional data", "authors": [ "Ivo Babuska", "Victor Nistor" ], "comment": "23 pages", "categories": [ "math.NA", "math.AP" ], "abstract": "We study the approximation properties of a harmonic function $u \\in H\\sp{1-k}(\\Omega)$, $k > 0$, on relatively compact sub-domain $A$ of $\\Omega$, using the Generalized Finite Element Method. For smooth, bounded domains $\\Omega$, we obtain that the GFEM--approximation $u_S$ satisfies $\\|u - u_S\\|_{H\\sp{1}(A)} \\le C h^{\\gamma}\\|u\\|_{H\\sp{1-k}(\\Omega)}$, where $h$ is the typical size of the ``elements'' defining the GFEM--space $S$ and $\\gamma \\ge 0 $ is such that the local approximation spaces contain all polynomials of degree $k + \\gamma + 1$. The main technical result is an extension of the classical super-approximation results of Nitsche and Schatz \\cite{NitscheSchatz72} and, especially, \\cite{NitscheSchatz74}. It turns out that, in addition to the usual ``energy'' Sobolev spaces $H^1$, one must use also the negative order Sobolev spaces $H\\sp{-l}$, $l \\ge 0$, which are defined by duality and contain the distributional boundary data.", "revisions": [ { "version": "v1", "updated": "2004-10-06T20:29:45.000Z" } ], "analyses": { "keywords": [ "boundary value problems", "interior numerical approximation", "distributional data", "local approximation spaces contain", "negative order sobolev spaces" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....10184B" } } }