{ "id": "math/0410180", "version": "v2", "published": "2004-10-06T17:35:24.000Z", "updated": "2004-10-08T17:48:28.000Z", "title": "Conformally flat manifolds with nonnegative Ricci curvature", "authors": [ "Gilles Carron", "Marc Herzlich" ], "comment": "revised version, added reference to previous paper by S. Zhu on the same subject", "categories": [ "math.DG" ], "abstract": "We show that complete conformally flat manifolds of dimension n>2 with nonnegative Ricci curvature enjoy nice rigidity properties: they are either flat, or locally isometric to a product of a sphere and a line, or are globally conformally equivalent to flat space or to a spherical spaceform. This extends previous works by Q.-M. Cheng, M.H. Noronha, B.-L. Chen and X.-P. Zhu, and S. Zhu.", "revisions": [ { "version": "v2", "updated": "2004-10-08T17:48:28.000Z" } ], "analyses": { "subjects": [ "53C15", "53C24", "58J60" ], "keywords": [ "nonnegative ricci curvature", "conformally flat manifolds", "curvature enjoy nice rigidity properties", "ricci curvature enjoy nice rigidity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....10180C" } } }