{ "id": "math/0410106", "version": "v1", "published": "2004-10-05T17:10:12.000Z", "updated": "2004-10-05T17:10:12.000Z", "title": "p-variation of strong Markov processes", "authors": [ "Martynas Manstavicius" ], "comment": "Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Probability (http://www.imstat.org/aop/) at http://dx.doi.org/10.1214/009117904000000423", "journal": "Annals of Probability 2004, Vol. 32, No. 3A, 2053-2066", "doi": "10.1214/009117904000000423", "categories": [ "math.PR" ], "abstract": "Let \\xi_t, t\\in[0,T], be a strong Markov process with values in a complete separable metric space (X,\\rho) and with transition probability function P_{s,t}(x,dy), 0\\le s\\le t\\le T, x\\in X. For any h\\in[0,T] and a>0, consider the function \\alpha(h,a)=sup\\bigl{P_{s,t}\\bigl(x,{y:\\rho(x,y)\\ge a}\\bigr):x\\in X,0\\le s\\le t\\le (s+h)\\wedge T\\bigr}. It is shown that a certain growth condition on \\alpha(h,a), as a\\downarrow0 and h stays fixed, implies the almost sure boundedness of the p-variation of \\xi_t, where p depends on the rate of growth.", "revisions": [ { "version": "v1", "updated": "2004-10-05T17:10:12.000Z" } ], "analyses": { "subjects": [ "60J25", "60G17", "60J35", "60G40" ], "keywords": [ "strong markov processes", "p-variation", "complete separable metric space", "transition probability function", "growth condition" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....10106M" } } }