{ "id": "math/0410080", "version": "v1", "published": "2004-10-05T09:33:36.000Z", "updated": "2004-10-05T09:33:36.000Z", "title": "Moduli spaces of homotopy theory", "authors": [ "David Blanc" ], "comment": "25 pages", "categories": [ "math.AT" ], "abstract": "The moduli spaces refered to are topological spaces whose path components parametrize homotopy types. Such objects have been studied in two separate contexts: rational homotopy types, in the work of several authors in the late 1970's; and general homotopy types, in the work of Dwyer-Kan and their collaborators. We here explain the two approaches, and show how they may be related to each other.", "revisions": [ { "version": "v1", "updated": "2004-10-05T09:33:36.000Z" } ], "analyses": { "subjects": [ "55P15", "18G30" ], "keywords": [ "moduli spaces", "homotopy theory", "path components parametrize homotopy types", "general homotopy types", "rational homotopy types" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....10080B" } } }