{ "id": "math/0410067", "version": "v2", "published": "2004-10-04T22:10:52.000Z", "updated": "2004-10-19T21:52:24.000Z", "title": "The Selberg trace formula and Selberg zeta-function for cofinite Kleinian groups with finite-dimensional unitary representations", "authors": [ "Joshua S. Friedman" ], "comment": "25 pages, submitted to Mathematische Zeitschrift", "doi": "10.1007/s00209-005-0806-9", "categories": [ "math.NT", "math.SP" ], "abstract": "For cofinite Kleinian groups, with finite-dimensional unitary representations, we derive the Selberg trace formula. As an application we define the corresponding Selberg zeta-function and compute its divisor, thus generalizing results of Elstrodt, Grunewald and Mennicke to non-trivial unitary representations. We show that the presence of cuspidal elliptic elements sometimes adds ramification point to the zeta function. In fact, if D is the ring of Eisenstein integers, then the Selberg zeta-function of PSL(2,D) contains ramification points and is the sixth-root of a meromorphic function.", "revisions": [ { "version": "v2", "updated": "2004-10-19T21:52:24.000Z" } ], "analyses": { "subjects": [ "11F72", "11M36" ], "keywords": [ "selberg trace formula", "cofinite kleinian groups", "finite-dimensional unitary representations", "selberg zeta-function", "adds ramification point" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....10067F" } } }