{ "id": "math/0410008", "version": "v1", "published": "2004-10-01T08:25:31.000Z", "updated": "2004-10-01T08:25:31.000Z", "title": "Decay of correlations and central limit theorem for meromorphic maps", "authors": [ "Tien-Cuong Dinh", "Nessim Sibony" ], "comment": "17 pages", "categories": [ "math.DS", "math.CV" ], "abstract": "Let f be a dominating meromorphic self-map of large topological degree on a compact Kaehler manifold. We give a new construction of the equilibrium measure of f and prove that it is exponentially mixing. Then, we deduce the central limit theorem for Lipschitzian observables.", "revisions": [ { "version": "v1", "updated": "2004-10-01T08:25:31.000Z" } ], "analyses": { "keywords": [ "central limit theorem", "meromorphic maps", "correlations", "compact kaehler manifold", "dominating meromorphic self-map" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....10008D" } } }