{ "id": "math/0409502", "version": "v1", "published": "2004-09-26T23:18:14.000Z", "updated": "2004-09-26T23:18:14.000Z", "title": "Large time asymptotics for the density of a branching Wiener process", "authors": [ "Pál Révész", "Jay Rosen", "Zhan Shi" ], "categories": [ "math.PR" ], "abstract": "Given an R^d-valued supercritical branching Wiener process, let D(A,T) be the number of particles in a subset A of R^d at time T, (T=0,1,2,...). We provide a complete asymptotic expansion of D(A,T) as T goes to infinity, generalizing the work of X.Chen.", "revisions": [ { "version": "v1", "updated": "2004-09-26T23:18:14.000Z" } ], "analyses": { "subjects": [ "60F15", "60J80" ], "keywords": [ "large time asymptotics", "complete asymptotic expansion", "supercritical branching wiener process" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......9502R" } } }