{ "id": "math/0409454", "version": "v3", "published": "2004-09-23T15:30:44.000Z", "updated": "2005-01-06T20:31:36.000Z", "title": "The amenability constant of the Fourier algebra", "authors": [ "Volker Runde" ], "comment": "LaTeX2e; 11 pages; some more minor revisions", "journal": "Proc. Amer. Math. Soc. 134 (2006), 1473-1481", "categories": [ "math.FA" ], "abstract": "For a locally compact group $G$, let $A(G)$ denote its Fourier algebra and $\\hat{G}$ its dual object, i.e. the collection of equivalence classes of unitary represenations of $G$. We show that the amenability constant of $A(G)$ is less than or equal to $\\sup \\{\\deg(\\pi) : \\pi \\in \\hat{G} \\}$ and that it is equal to one if and only if $G$ is abelian.", "revisions": [ { "version": "v3", "updated": "2005-01-06T20:31:36.000Z" } ], "analyses": { "subjects": [ "46H20", "20B99", "22D05", "22D10", "43A40", "46J10", "46J40", "46L07", "47L25", "47L50" ], "keywords": [ "fourier algebra", "amenability constant", "locally compact group", "dual object", "equivalence classes" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Proc. Amer. Math. Soc." }, "note": { "typesetting": "LaTeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......9454R" } } }