{ "id": "math/0409399", "version": "v1", "published": "2004-09-21T14:45:30.000Z", "updated": "2004-09-21T14:45:30.000Z", "title": "Postnikov pieces and BZ/p-homotopy theory", "authors": [ "Natalia Castellana", "Juan A. Crespo", "Jerome Scherer" ], "comment": "15 pages", "categories": [ "math.AT", "math.GR" ], "abstract": "We present a constructive method to compute the cellularization with respect to K(Z/p, m) for any integer m > 0 of a large class of H-spaces, namely all those which have a finite number of non-trivial K(Z/p, m)-homotopy groups (the pointed mapping space map(K(Z/p, m), X) is a Postnikov piece). We prove in particular that the K(Z/p, m)-cellularization of an H-space having a finite number of K(Z/p, m)-homotopy groups is a p-torsion Postnikov piece. Along the way we characterize the BZ/p^r-cellular classifying spaces of nilpotent groups.", "revisions": [ { "version": "v1", "updated": "2004-09-21T14:45:30.000Z" } ], "analyses": { "subjects": [ "55R35", "55P60", "55P20", "20F18" ], "keywords": [ "bz/p-homotopy theory", "finite number", "p-torsion postnikov piece", "nilpotent groups", "large class" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......9399C" } } }