{ "id": "math/0409362", "version": "v1", "published": "2004-09-20T17:11:59.000Z", "updated": "2004-09-20T17:11:59.000Z", "title": "Global existence of solutions to multiple speed systems of quasilinear wave equations in exterior domains", "authors": [ "Jason Metcalfe", "Makoto Nakamura", "Christopher D. Sogge" ], "comment": "30 pages. To appear in Forum Math", "categories": [ "math.AP" ], "abstract": "In this paper we prove global existence for certain multispeed Dirichlet-wave equations with quadratic nonlinearities outside of obstacles. We assume the natural null condition for systems of quasilinear wave equations with multiple speeds. The null condition only puts restrictions on the self-interactions of each wave family. We use the method of commuting vector fields and weighted space-time $L^2$ estimates.", "revisions": [ { "version": "v1", "updated": "2004-09-20T17:11:59.000Z" } ], "analyses": { "subjects": [ "35L70", "42B99" ], "keywords": [ "quasilinear wave equations", "multiple speed systems", "global existence", "exterior domains", "natural null condition" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......9362M" } } }