{ "id": "math/0409322", "version": "v1", "published": "2004-09-18T18:05:34.000Z", "updated": "2004-09-18T18:05:34.000Z", "title": "Hessians and the moduli space of cubic surfaces", "authors": [ "Elisa Dardanelli", "Bert van Geemen" ], "comment": "20 pages", "categories": [ "math.AG" ], "abstract": "The Hessian of a general cubic surface is a nodal quartic surface, hence its desingularisation is a K3 surface. We determine the transcendental lattice of the Hessian K3 surface for various cubic surfaces (with nodes and/or Eckardt points for example). Classical invariant theory shows that the moduli space of cubic surfaces is a weighted projective space. We describe the singular locus and some other subvarieties of the moduli space.", "revisions": [ { "version": "v1", "updated": "2004-09-18T18:05:34.000Z" } ], "analyses": { "keywords": [ "moduli space", "general cubic surface", "nodal quartic surface", "hessian k3 surface", "transcendental lattice" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......9322D" } } }