{ "id": "math/0409153", "version": "v1", "published": "2004-09-09T09:31:56.000Z", "updated": "2004-09-09T09:31:56.000Z", "title": "Bubble towers for supercritical semilinear elliptic equations", "authors": [ "Yuxin Ge", "Ruihua Jing", "Frank Pacard" ], "categories": [ "math.AP" ], "abstract": "We construct positive solutions of the semilinear elliptic problem $\\Delta u+ \\lambda u + u^p = 0$ with Dirichet boundary conditions, in a bounded smooth domain $\\Omega \\subset \\R^N$ $(N\\geq 4)$, when the exponent $p$ is supercritical and close enough to $\\frac{N+2}{N-2}$ and the parameter $\\lambda\\in\\R$ is small enough. As $p\\to \\frac{N+2}{N-2}$, the solutions have multiple blow up at finitely many points which are the critical points of a function whose definition involves Green's function. Our result extends the result of Del Pino, Dolbeault and Musso \\cite{DDM} when $\\Omega$ is a ball and the solutions are radially symmetric.", "revisions": [ { "version": "v1", "updated": "2004-09-09T09:31:56.000Z" } ], "analyses": { "subjects": [ "35J60", "35J25" ], "keywords": [ "supercritical semilinear elliptic equations", "bubble towers", "semilinear elliptic problem", "dirichet boundary conditions", "bounded smooth domain" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......9153G" } } }