{ "id": "math/0409116", "version": "v1", "published": "2004-09-07T21:55:46.000Z", "updated": "2004-09-07T21:55:46.000Z", "title": "The Abel-Jacobi map for higher Chow groups", "authors": [ "Matt Kerr", "James Lewis", "Stefan Müller-Stach" ], "comment": "29 pages, 1 figure", "categories": [ "math.AG" ], "abstract": "We construct a map between Bloch's higher Chow groups and Deligne homology for smooth, complex quasiprojective varieties on the level of complexes. For complex projective varieties this results in a formula which generalizes at the same time the classical Griffiths Abel-Jacobi map and the Borel/Beilinson/Goncharov regulator type maps.", "revisions": [ { "version": "v1", "updated": "2004-09-07T21:55:46.000Z" } ], "analyses": { "subjects": [ "14C25", "14C30", "14C35", "19E15" ], "keywords": [ "blochs higher chow groups", "borel/beilinson/goncharov regulator type maps", "classical griffiths abel-jacobi map", "complex quasiprojective varieties", "complex projective varieties" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......9116K" } } }