{ "id": "math/0409073", "version": "v1", "published": "2004-09-05T20:29:07.000Z", "updated": "2004-09-05T20:29:07.000Z", "title": "Timelike Minimal Surfaces via Loop Groups", "authors": [ "Jun-ichi Inoguchi", "Magdalena Toda" ], "comment": "43 pages, 3 figures", "journal": "Acta Applicandae Mathematicae, vol. 83, no. 3, (II), 2004, pp 313-355", "categories": [ "math.DG" ], "abstract": "We study manifolds with split-complex structure and apply some general results to the study of Lorentz surfaces. In particular, we apply our results to timelike minimal immersions. The conformal realization of these surfaces is obtained using a representation based on loop groups. The classical Weierstrass representation (integral formula) is recovered as a byproduct of this general setting.", "revisions": [ { "version": "v1", "updated": "2004-09-05T20:29:07.000Z" } ], "analyses": { "subjects": [ "53A10", "58E20", "22E67" ], "keywords": [ "timelike minimal surfaces", "loop groups", "study manifolds", "integral formula", "split-complex structure" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 43, "language": "en", "license": "arXiv", "status": "editable" } } }