{ "id": "math/0409017", "version": "v1", "published": "2004-09-01T14:28:05.000Z", "updated": "2004-09-01T14:28:05.000Z", "title": "Characterization of rearrangement invariant spaces with fixed points for the Hardy-Littlewood maximal operator", "authors": [ "Joaquim Martin", "Javier Soria" ], "comment": "8 pages", "categories": [ "math.CA", "math.FA" ], "abstract": "We characterize the rearrangement invariant spaces for which there exists a non-constant fixed point, for the Hardy-Littlewood maximal operator (the case for the spaces $L^p(\\mathbb{R}^{n})$ was first considered by Korry in \\cite{Ko}). The main result that we prove is that the space $L^{\\frac{n}{n-2},\\infty}(\\mathbb{R}^{n})\\cap L^{\\infty}(\\mathbb{R}^{n})$ is minimal among those having this property", "revisions": [ { "version": "v1", "updated": "2004-09-01T14:28:05.000Z" } ], "analyses": { "subjects": [ "42B25", "46E30" ], "keywords": [ "rearrangement invariant spaces", "hardy-littlewood maximal operator", "characterization", "non-constant fixed point", "main result" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......9017M" } } }