{ "id": "math/0408293", "version": "v1", "published": "2004-08-22T07:24:54.000Z", "updated": "2004-08-22T07:24:54.000Z", "title": "Epsilon factor for GL_l \\times GL_{l'}; l\\neq l' primes", "authors": [ "Tetsuya Takahashi" ], "comment": "14 pages", "categories": [ "math.NT", "math.RT" ], "abstract": "Let $F$ be a non-Archimedean local field with finite residual field of characteristic $p$. In this article we calculate the $\\epsilon$-factor of pairs for $\\GL_l(F) \\times \\GL_{l'}(F)$ where $l$ and $l'$ are distinct primes including the case $l=p$. For this calculation, we use the local Langlands correspondence and non-Galois base change lift. This method leads to the explicit conjecture of the $\\epsilon$-factor of the representations of $\\GL_m \\times \\GL_n$ when $n$ is relatively prime to $m$ and $p$.", "revisions": [ { "version": "v1", "updated": "2004-08-22T07:24:54.000Z" } ], "analyses": { "subjects": [ "22E50", "11F70" ], "keywords": [ "epsilon factor", "non-galois base change lift", "non-archimedean local field", "finite residual field", "local langlands correspondence" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......8293T" } } }