{ "id": "math/0408004", "version": "v2", "published": "2004-07-31T13:35:14.000Z", "updated": "2005-02-22T22:13:58.000Z", "title": "Skipped Blocking and other Decompositions in Banach spaces", "authors": [ "Steven F. Bellenot" ], "comment": "11 pages, 0 figures", "categories": [ "math.FA" ], "abstract": "Necessary and sufficient conditions are given for when a sequence of finite dimensional subspaces (X_n) can be blocked to be a skipped blocking decompositon (SBD). These are very similar to known results about blocking of biorthogonal sequences. A separable space $X$ has PCP, if and only if, every norming decomposition (X_n) can be blocked to be a boundedly complete SBD. Every boundedly complete SBD is a JT-decomposition.", "revisions": [ { "version": "v2", "updated": "2005-02-22T22:13:58.000Z" } ], "analyses": { "subjects": [ "46B20", "46B15", "46B22" ], "keywords": [ "banach spaces", "skipped blocking", "boundedly complete sbd", "decomposition", "finite dimensional subspaces" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......8004B" } } }